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Abstract

A general low-order fluid–structure interaction model capable of evaluating the multi-mode interactions in vortex-

induced vibrations of flexible curved/straight structures is presented. Cross-flow motions due to unsteady lift forces of

inclined sagged cables and tensioned beams in uniform currents are investigated. In contrast to a linear equation

governing the transverse motion of straight beams or cables typically considered in the literature, coupled horizontal/

vertical (axial/transverse) displacements and geometric nonlinearities of curved cable (straight beam) are accounted for.

A distributed nonlinear wake oscillator is considered in the approximation of space–time varying hydrodynamics. This

semi-empirical fluid force model in general depends on the mass-damping parameter and has further been modified to

capture both the effects of varying initial curvatures of the inclined cylinder and the Reynolds number. Numerical

simulations are performed in the case of varying flow velocities and parametric results highlight several meaningful

aspects of vortex-induced vibrations of long flexible cylinders. These comprise multi-mode lock-in, sharing, switching

and interaction features in the space and time domains, the estimated maximum modal and total amplitudes, the

resonant nonlinear modes of flexible cylinders and their space–time modifications, and the influence of fluid/structure

parameters. A shortcoming of single-mode or linear structural model is underlined. Some quantitative and qualitative

comparisons of numerical/experimental results are discussed to demonstrate the validity and required improvement of

the proposed modelling and analysis predictions.

& 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

Vortex-induced vibration (VIV) of flexible cylindrical structures such as risers, mooring cables, tethers and pipelines

exhibits intriguing fluid–solid interaction phenomena in many offshore engineering applications. When exposed to

current flows, these slender bodies undergo nonlinear finite-amplitude oscillations due to the space–time varying

hydrodynamics associated with vortex shedding. Because VIV results in an increased mean drag and high oscillating

stress-induced fatigue in long flexible structures, VIV is one of the utmost concerns in deepwater developments.
e front matter & 2010 Elsevier Ltd. All rights reserved.
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Nomenclature

A, B first-order forms in low-order model

Af area of displaced fluid volume

A/D experimental maximum amplitude

An/D (AR/D) maximum modal (total) amplitudes

Arms/D root-mean-squared amplitudes

c structural damping coefficient

C1, C2 coefficients in static shape analysis

CA added mass coefficient

CL fluctuating lift coefficient

CL0 lift coefficient of static cylinder

D hydrodynamic diameter

EAr axial stiffness

EI bending stiffness

F, G empirical wake coefficients

fd natural frequency of mode predominating in

VIV

fn, dn generalized displacement variables

H1, H2 lift force components

k coordinate transformation parameter

L (L/D) cylinder length (aspect ratio)

m (ma) cylinder mass (potential added mass)

m*(a*) mass ratio (mass-damping parameter) by

Williamson and co-researchers

N number of considered modes

pn, en generalized velocity variables

Qx, Qy fluid wake variables

Re Reynolds number

s arc-length coordinate

SG Skop–Griffin mass-damping parameter

St Strouhal number of static cylinder

t time

T (TH) axial (horizontal) static tension

Ta tension at maximum sag of cable

u horizontal or axial displacement

unm (vnm) normalized nonlinear modes

Ur reduced flow velocity parameter

v vertical or transverse displacement

V current velocity

WE structural effective weight

x horizontal or axial coordinate

x* normalized x/D, 1 being maximum

XH (YH) horizontal offset (water depth)

y vertical or transverse coordinate

a, b, d mechanical parameters

g stall parameter

D tensioned-beam parameter

dA, XA,CA variables in deriving formulae for wake

coefficients

e (s) Cauchy bending strain (stress)

y (yr) local (global chord) inclination angle

Lnij (Gnijk) quadratic (cubic) nonlinear coefficients in

cylinder equations

m Skop–Griffin mass ratio

x modal damping

Pni (Rnijk) linear (cubic nonlinear) coefficients in

wake equations

r fluid density

f horizontal (axial) modal shape

j vertical (transverse) modal shape

os vortex shedding frequency

os,A vortex frequency at maximum A/D

on (oosc) natural (oscillating) modal frequency
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In general, the VIV fatigue accumulation depends on a number of mechanical, physical and fluid–solid parameters.

In essence, it is a function of structural vibration characteristics including natural frequencies, modes, amplitudes and

curvatures. Depending on the relationship between vortex-shedding and natural frequencies, different modes can be

concurrently or non-concurrently excited in a distributed-parameter or infinite-dimensional system. These entail an

intrinsic feature of multi-mode interactions in the coupled fluid–structure system. To examine a variety of dynamic

scenarios caused by the hydrodynamics and structural geometric nonlinearities, a computationally robust model and

systematic approach to the VIV of flexible structures with different curved/straight configurations is needed.

Many studies have attempted to numerically investigate VIV of rigid and flexible cylinders (Gabbai and Benaroya,

2005; Sarpkaya, 2004; Williamson and Govardhan, 2004). For flexible cylinders, the VIV predictions are accomplished by

employing either computational fluid dynamics (CFD) or a semi-empirical approach (Chaplin et al., 2005a; Larsen and

Halse, 1997). The main difference between these two approaches is the modelling of the hydrodynamics. Usually, the

CFD-based procedure solves the Navier–Stokes equations to obtain the time-dependent fluid forces in two-dimensional

planes which are, in turn, integrated into a finite-element structural model (Willden and Graham, 2003). This method,

albeit convincingly capturing the fluid physics, requires a large amount of data storage and computational effort in

numerical simulations in order to handle multi-degree-of-freedom motions of long flexible structures and a series

of parametric studies with varying parameters. Owing to the limited computer technology at the present time, the

CFD-based approach is not yet a practical solution to actual analysis and design involving a large number of variables.

Consequently, several exiting commercial codes still rely upon a semi-empirical approach in which the accuracy of VIV

response prediction is strongly related to experimental data applicable to the modelling conditions. Based on a recent

comparison of several numerical tools, Chaplin et al. (2005a) showed that the semi-empirical approach is more successful

than the CFD-based approach in evaluating the VIV response of a vertical straight beam in a stepped current.
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With regard to the semi-empirical approach, various low-order fluid models have been proposed in the literature and

the so-called nonlinear wake oscillators are perhaps the simplest low-computational models (Gabbai and Benaroya,

2005). Being phenomenological, a wake oscillator is generally based on a van der Pol equation which captures such

fundamental VIV phenomena as lock-in and self-limiting amplitudes. As regards the wake characterization, an attempt

to derive the wake oscillator from the fluid mechanics of vortex shedding street has been presented and discussed by

Iwan and Blevins (1974). Nevertheless, some assumptions are kept in mind when utilizing the wake oscillator. These

comprise, for instance, the consideration of nominal two-dimensional flow, the full correlation length of vortex

shedding along the length of flexible cylinder during the lock-in and the omitted effect of end boundaries on flow

behaviour. Since the pioneering idea of Bishop and Hassan (1964) and the subsequent work of Hartlen and Currie

(1970), many wake oscillator models have been introduced and modified mostly to approximate the unsteady lift fluid

forces acting on rigid cylinders in uniform flows (Gabbai and Benaroya, 2005). Recently, refined wake oscillators are

given by Skop and Balasubramanian (1997) and Facchinetti et al. (2004). New models overcome a limitation of older

models in view of evaluating the self-limiting response at zero structural damping. They also have successfully been

applied to VIV analyses of flexible cylinders such as a horizontally suspended cable (Kim and Perkins, 2002) and a

catenary-shaped riser (Srinil et al., 2009) based on a single modal expansion analysis, and vertical tensioned beam

(Violette et al., 2007) based on a finite difference discretization.

In spite of previous extensive investigations, insights into nonlinear multi-mode dynamics of long flexible structures

undergoing VIV, even in uniform flow cases, are lacking. With reference to recent large-scale or in situ experimental

observations, some interesting aspects comprise the space/time sharing, switching and interaction of multiple modes in

different lock-in or synchronization regimes along with the estimation of response amplitudes (Chaplin et al., 2005b;

Jaiswal and Vandiver, 2007; Trim et al., 2005), the dependence of VIV on Reynolds number (Swithenbank et al., 2008),

the influence of cylinder initial curvatures resulting in modal interactions (Hover et al., 1997a, 1997b) and the highly

modulated responses (Chaplin et al., 2005b; Chasparis et al., 2009). These aspects will be discussed in this paper based

on a low-order multi-mode model and numerical approach. Recently, Violette et al. (2010) have performed a linear

stability approach to identify the mode switching with varying flow velocity and the time sharing of two excited modes

in VIV of a straight cable. Nevertheless, owing to the employed linearized structural and wake oscillator models, the

estimation of maximum amplitudes and the effect of geometric/wake nonlinearities in both space and time were

disregarded in their studies. These issues will be accounted for and discussed herein.

This paper presents a general low-order fluid–solid interaction model capable of evaluating the nonlinear multi-mode

dynamics and interactions of flexible curved/straight structures undergoing VIV. Cross-flow motions due to distributed lift

forces of inclined sagged cables and tensioned beams are investigated. The paper is organized as follows. In Section 2, the

nonlinear equations of structural motions based on a flexural curved cable model and the empirical hydrodynamic model

based on a modified wake oscillator are summarized. A low-order multi-mode wake/cylinder interaction model is then

developed in Section 3, along with a discussion on wake coefficients. Based on numerical investigations, several features are

highlighted in Section 4, including the modal characteristics of curved/straight structures (Section 4.1), the nonlinear time

histories of the cylinder/fluid wake (Section 4.2), the response amplitude diagrams (Section 4.3), the resonant nonlinear

modes of flexible cylinder (Section 4.4), the influence of Reynolds number (Section 4.5) and the role of geometric

nonlinearities (Section 4.6). Some numerical/experimental comparisons are discussed (Section 4.7), along with some aspects

on VIV modelling and predictions (Section 4.8). The paper ends with a summary and concluding remark in Section 5.
2. Nonlinear structural and hydrodynamic models

A great majority of research literature dealing with VIV modelling and analysis of flexible cylinders considers a linear

equation governing the transverse motion of straight tensioned beams or cables. This model is limited from a practical

viewpoint since there are different kinds of curved structures in actual applications. In addition, the effect of geometric

nonlinearities (i.e. structural nonlinear stiffness) on VIV of long flexible cylinders may be considerable depending on the

system parameters, vibration amplitudes and multi-mode interactions. To fully capture both the effects of varying

initial curvatures and geometric nonlinearities, a general nonlinear fluid/structure model – valid for both inclined

curved and straight cylindrical structures – is considered.

With reference to a fixed Cartesian coordinate system, Fig. 1(a) (1(b)) displays a fully submerged inclined sagged

cable (vertical tensioned beam) model having an equilibrium length L and being connected from a stationary floating

structure to the seafloor with pinned–pinned supports. The incoming flow is considered to be spatially uniform and

aligned with the Z-direction (see also a remark in Section 4.8). In Fig. 1(a), XY denotes the plane of initial static

equilibrium and cross-flow motions of cable, with horizontal offset XH and water depth YH defining a global chord

inclination angle as yr=tan�1(YH/XH).
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Fig. 1. A model of flexible (a) curved and (b) straight cylindrical structures in uniform currents.
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Based on finite-amplitude vibrations, the geometrically nonlinear partial-differential equations describing cross-flow

motions about the static configuration of a flexural inclined curved cable in water are expressed in a general dimensional

form as (Srinil et al., 2007, 2009)

ðmþmaÞ
@2u

@t2
þ c

@u

@t
¼

@

@s
T

@u

@s

� �
þ EAr

@x

@s

@u

@s
þ
@y

@s

@v

@s
þ

1

2

@u

@s

� �2

þ
@v

@s

� �2
 ! !

@x

@s
þ
@u

@s

� �
�EI

@

@s

@2u

@s2

� �( )
þH1;

ð1Þ

ðmþmaÞ
@2v

@t2
þ c

@v

@t
¼

@

@s
T

@v

@s

� �
þ EAr

@x

@s

@u

@s
þ
@y

@s

@v

@s
þ

1

2

@u

@s

� �2

þ
@v

@s

� �2
 ! !

@y

@s
þ
@v

@s

� �
�EI

@

@s

@2v

@s2

� �( )
þH2;

ð2Þ

in which s denotes arc-length coordinate and t denotes time, x and y are the static coordinates with u and v being the

associated dynamic displacements in the horizontal (X) and vertical (Y) directions, respectively. The flexible cylinder

properties, including the mass (m), viscous damping (c), bending (EI) and axial (EAr) stiffness, are assumed to be

spatially uniform. The fluid properties comprise potential added mass (ma=CArAf), density (r), cross-sectional area of

displaced volume (Af) and added mass coefficient (CA). T denotes the varying axial tension while H1 and H2 represent

the components of space–time varying lift forces leading to cross-flow VIV. Note that the effects of shear, torsion,

seabed interaction, surface waves, support movement, tangential drag forces and in-line VIV in the Z-direction are

herein neglected. Moreover, the EI(@4x/@s4) and EI(@4y/@s4) terms governing the bending effect on a static curved

configuration are omitted from Eq. (1) and Eq. (2), respectively, in order to arrive at a closed-form formula for a

catenary cable (see Eq. (6)). A complete three-dimensional equations of structural motion subject to both cross-flow/

in-line VIV can be found in Srinil et al. (2009).

For convenience in the low-order modelling which relies on continuous functions of curved static profiles and linear

modal shapes, the s coordinate is projected onto the horizontal x coordinate through the transformation
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where a prime denotes differentiation with respect to x which is now utilized as a new independent variable. By

substituting Eq. (3) into Eqs. (1) and (2) and normalizing all the displacement-related variables/derivatives with respect

to the hydrodynamic diameter (D), the geometrically nonlinear equations of cross-flow motions of an inclined cable

become
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where overdot denotes differentiation with respect to t. The mechanical parameters are d=EI/(mþma)D
4, b=TH/

(mþma)D
2, a=EAr/TH, with TH=T/k being a constant horizontal component of cable tension. By assuming that a

planar static configuration of cable is only due to its effective weight (WE) accounting for the buoyancy force, an exact

closed-form hyperbolic function describing y=y(x) reads

yðxÞ ¼
�TH

WED
cosh

WED

TH

xþ C1

� �
þ C2; ð6Þ

where C1 and C2 are determined based on boundary conditions. By using the cosine law, the horizontal and vertical

components (H1, H2) of normal lift force (CL) in Eqs. (4) and (5) are given by

H1 ¼�
1

2
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2
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2
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in which V is the flow velocity, the associated lift coefficients CLx=Qx–2g _u /os and CLy=Qy–2g_v /os (Srinil et al.,

2009), g the so-called stall parameter (Skop and Balasubramanian, 1997), os the vortex-shedding frequency (rad/s) with

os=2pStV/D (Sumer and Fredsøe, 2006), St the Strouhal number and y the cable local inclination angle measured

clockwise from the X-axis. The assumed variables Qx and Qy are governed by the following companion distributed

wake oscillators (Srinil et al., 2009):
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where CL0 is the lift coefficient of a stationary cylinder, F and G are the two variable empirical wake coefficients which

depend on system parameters (see Section 3). It is worth noting that Eqs. (9) and (10) resemble the original wake

oscillator of Skop and Balasubramanian (1997), with the space-dependent (sin y, cos y) terms being incorporated into

the former in an attempt to capture both the effect of varying initial curvatures on the wake and the concurrent

horizontal/vertical dynamics of cable through Eqs. (4) and (5).

Note that, at a discrete x position, the local inclination angle y(x) is arbitrary since yEtan�1(y0). Depending on an

inclined curved static configuration (Eq. (6)), the spatial gradient y0(x) may be positive, negative or even zero (i.e. at cable

maximum sag). Accordingly, a mathematical singularity occurs in Eq. (9) or (10) when y becomes, e.g., 01 or 901,

respectively. Nevertheless, it will be shown in Section 3 that such singularity can be overcome through the Galerkin-based

procedure whereby the continuous y(x) function based on Eq. (6) is incorporated into the ensuing integrals involving

modal shape functions (see Eqs. (17) and (20)).

There has also been a discussion in the literature on the choice of coupling term (structural displacement, velocity and

acceleration) in the wake oscillator (i.e. the right term in Eq. (9) or (10)). Based on some comparisons with experimental

results of rigid cylinders, Facchinetti et al. (2004) recommended the acceleration coupling model. However, this model

has recently been commented by Farshidianfar and Zanganeh (2010) who showed, on the other hand, the superior

results of the velocity coupling model. Hence, the velocity coupling term is herein chosen by considering and modifying
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the Skop and Balasubramanian’s model. Other modifications of the Skop–Balasubramanian wake oscillator can be

found in the paper of Kim and Perkins (2002) where some additional nonlinear terms have been included to account for

the coupling of lift/drag forces, and in the work of Balasubramanian et al. (2000) where a diffusion term has been

included to account for a cellular vortex shedding in sheared flows.

Eqs. (1)–(10) are considered for arbitrarily inclined cables. In the case of uniform-tension beam whose coordinate

system is shown in Fig. 1(b), the condition @sE@x is applied to Eqs. (4) and (5) with y0=0 (k=1), H1=0 and TH=T.

Thus, u and v in the reduced Eqs. (4) and (5) describe axial and transverse motions of straight tensioned beam,

respectively. In turn, only Eq. (10) with cos y=1 is considered for the lift force. Overall, Eqs. (4) and (5) account for the

longitudinal inertia effect and quadratic/cubic nonlinear terms due to the dynamic extensibility, even in the absence of

initial curvatures (Srinil et al., 2007). Many VIV studies have neglected the geometric nonlinearities. Yet, as recently

remarked by Bearman (2009), their potential effects might be considerable and cannot be ruled out. They will be

highlighted in Sections 4.6 and 4.7 based on a comparison of linear versus nonlinear cylinder models.
3. Low-order multi-mode wake/cylinder interaction model

We aim to numerically investigate multi-mode VIV responses of curved/straight structures through a systematic

low-order model. This computationally robust model is practically useful when dealing with large parametric studies.

Due to the commensurability of vortex-shedding and natural frequencies, certain modes may take part in the coupled

fluid–structure system, even in the case of uniform flow with a single velocity (Chaplin et al., 2005b; Willden and

Graham, 2003). Because some recently observed VIV of full-scale drilling pipes tends towards standing wave responses

with increasing amplitudes (Tognarelli et al., 2008), standing wave characteristics are herein assumed. The travelling

wave responses would become more relevant at higher-order modes and/or in sheared flow cases (Vandiver et al., 2009).

In fact, the travelling wave behaviour is the expected response of slender structures with high aspect ratios (Lie and

Kaasen, 2006).

By rearranging Eqs. (4), (5), (9) and (10) in their first-order forms (A, B) and assuming that the wake oscillates

modally and concurrently with the cylinder, both cylinder and wake variables are postulated in terms of a full eigenbasis

by letting

_u ¼A1- uðx; tÞ ¼
X1
n ¼ 1
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X1
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where fn and jn are synchronized horizontal (axial) and vertical (transverse) displacement shape functions of nth cable

(beam) modes, respectively. These eigenfunctions have been obtained based on a Fourier sine-based series in conjunction

with a hybrid analytical–numerical eigensolution of linear equations of free undamped motions in Eqs. (4) and (5) (Srinil

et al., 2007, 2009). In Eq. (11) ((12)), fn (dn) and pn (en) denote, respectively, the generalized displacement and velocity of the

cylinder (wake). By substituting Eqs. (11) and (12), into (4), (5), (9) and (10), applying the Galerkin procedure with pinned–

pinned boundary conditions and orthonormalization of modes, and assuming the lock-in condition (osEon) through

Eqs. (7) and (8), a low-order model describing the multi-mode interaction in the VIV of a coupled cylinder/wake system is

given by the following nonlinear ordinary-differential equations:

_f n ¼ pn; ð13Þ
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where on are the natural frequencies in still water, SG the mass-damping or so-called Skop–Griffin parameter with SG=x/m
(Skop and Balasubramanian, 1997), m the fluid-to-cylinder mass ratio with m¼ rD2=8p2St2ðmþmaÞ, and x the modal

damping. In the above system, x and thus SG (as well as F and G) are assumed to be mode-independent. Overall, the linear

(Pni), quadratic (Lnij) and cubic (Gnijk, Rnijk) nonlinear coefficients – which govern the multi-mode contributions and

interaction effects – are given, respectively, by

Pni ¼

Z XH=D

0

k
fnfi

y0
þ jnji

� �
dx=

Z XH=D

0

k
f2

n

y0
þ j2

n

� �
dx; ð17Þ

Knij ¼�ba
Z XH=D

0

1

k3

3

2
f0nf

0
if
0
j þ y0f0nf

0
ij
0
j þ

1

2
f0nj

0
ij
0
j þ j0nf

0
ij
0
j þ

y0

2
j0nf

0
if
0
j þ

3

2
y0j0nj

0
ij
0
j

� �
dx; ð18Þ

Cnijk ¼�
ba
2

Z XH=D

0

1

k3
ðf0nf

0
if
0
jf
0
k þ f0nf

0
ij
0
jj
0
k þ j0nf

0
if
0
jj
0
k þ j0nj

0
ij
0
jj
0
kÞdx; ð19Þ

Rnijk ¼

Z XH=D

0

k3
fnfifjfk

y03
þ jnjijjjk

� �
dx=

Z XH=D

0

k
f2

n

y0
þ j2

n

� �
dx: ð20Þ

Depending on a number of considered modes N, the total N linear and N2 (N3) nonlinear quadratic (cubic)

coefficients in each modal equation can be calculated a priori, by numerically integrating Eqs. (17)–(20) with 64-point

Gaussian Quadrature. In the case of straight beams, XH/D becomes L/D. Eq. (16) results in N coupled van der Pol

oscillators having a unique vortex-shedding frequency os, which, in turn, interacts with different cylinder frequencies on

in Eq. (14). This accounts for an inherent detuning of system frequencies during VIV. For given initial displacement/

velocity conditions (fn, pn, dn, en), the 4N nonlinear equations are simultaneously solved by direct numerical integrations

with a sufficiently small time step (Srinil and Rega, 2008b). Overall, the coupled wake/cylinder system depends on the

input parameters (d, b, a, x, m, SG), the curved static configuration profile y(x), modal shape functions and

characteristics (on, fn, jn), strength of geometric/wake nonlinearities (Eqs. (18)–(20)) and the empirical parameters

(St, CL0,g, F, G).

As regards the wake coefficients, F and G may be derived as functions of system parameters defining both the flow

and cylinder properties in the experiments. Typically, cross-flow VIV of spring-mounted rigid cylinders in uniform flows

have been tested, and the associated steady-state solutions of coupled linear (cylinder) and nonlinear (wake) oscillators

are determined. These entail a relationship of wake coefficients to fluid-cylinder parameters and measured responses.

Following Skop and Balasubramanian (1997), F and G depend on the measured maximum amplitude A/D of cylinder

and frequency ratio os,A/on with os,A being the vortex frequency at maximum A/D. Some relevant formulae are

summarized as follows. In Eq. (16), the velocity coupling (pn) terms are dependent on F which reads

F ¼
mðSG þ gÞ2

2
ðd2A þ 4ÞðWA�dAÞ; ð21Þ

whereas the wake damping terms depend on G given by

G ¼
F

2C2
L0ðSG þ gÞ

3d2A�4

dAðd2A þ 4Þ
; ð22Þ

in which

dA ¼�
�ð8XA�1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8XA�1Þ

2
þ 48XAð4XA�1Þ

q
6XA

8<
:

9=
;

1=2

; ð23Þ

XA ¼
ðSG þ gÞðA=DÞ

CL0

� �2

; ð24Þ
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WA ¼
2

mðSG þ gÞ
os;A

on

�1

	 

: ð25Þ

Apart from the explicit (implicit) empirical parameters CL0 and g (St) in the above expressions, A/D and os,A/on are

described by the following SG-based functions (Skop and Balasubramanian, 1997)

A

D
¼

0:385

ð0:12þ S2GÞ
1=2
; ð26Þ

os;A

on

¼ 1:216þ
0:084

1þ 2:66S2G
: ð27Þ

These analytical expressions (Eqs. (21)–(27)) reveal the highly nonlinear relationships between wake coefficients and

system parameters. One may examine a priori the influence of individual parameter on coefficients F and G through a

graphical plot. As exemplified by Srinil et al. (2009), F(G) nonlinearly increases (decreases) as SG increases with

decreasing m while keeping x and other parameters constant. In previous studies based on a single-mode cross-flow VIV

(Kim and Perkins, 2002; Srinil et al., 2009), F and G were kept constant when parametrically varying V; thus, the

influence of Re was neglected. To further account for the Re effect in the VIV prediction model, a recent empirical

formula given by Govardhan and Williamson (2006) is considered in place of Eq. (26). The relevant equation reads

A

D
¼ ð1�1:12a*þ 0:30a*2Þlogð0:41Re0:36Þ; ð28Þ

in which the mass-damping parameter is an=(mn
þCA)x and the cylinder-to-fluid mass ratio is mn=m/(prD2/4), which

are defined differently from SG and m (Skop and Balasubramanian, 1997), respectively. With Eq. (28), both F and G

values can be recalculated when varying V. In Section 4.5, the models with fixed and varied wake coefficients (defined

herein as Fixed-FG and Varied-FG models) will be considered and compared to highlight the effect of Re on multi-

mode VIV predictions. It is worth emphasizing that establishing the dependence of empirical wake coefficients on

system parameters is theoretically and practically useful because different cylindrical structures having different

properties can be straightforwardly analyzed without demanding a new experimental setup and testing involving high

costs and times. Conversely, more experimental tests are needed to calibrate the variable hydrodynamic coefficients for

a more complex model involving a higher number of influencing parameters.
4. Parametric investigations and discussion

To examine the multi-mode VIV characteristics of different curved/straight structures, an inclined cable and two

tensioned beams (beam1 and beam2) having the properties given in Table 1 are investigated based on Eqs. (13)–(16).

Other constant parameters are CA=1, CL0=0.28 and g=0.183 (Skop and Balasubramanian, 1997). Note that while

in principle being dependent on Re (Norberg, 2003), CL0 and St are kept fixed when varying V. Both the cable and

beam1 have the same properties (Srinil and Rega, 2007), except that yr=301 for the cable. Beam2 is the pipe used in

an ExxonMobil experimental campaign whose post-processed data have been reported by Tognarelli et al. (2004).
Table 1

Dimensionless parameters of considered curved/straight structures.

Parameters Cable/Beam1 Beam2

D 272 22

L/D 2581 482

m 0.044 0.173

mn 8.14 2.23

x 0.01 0.003

St 0.20 0.17

SG 0.227 0.017

F 0.644 0.319

G 0.489 1.887
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This beam2 is compared with beam1 (Sections 4.5 and 4.6) and used in a comparison between numerical/experimental

results (Section 4.7). While the cylinder slenderness is described by an aspect ratio (L/D), the tension versus bending

contributions may be characterized by the dimensionless tensioned-beam parameter D¼L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ta=EI

p
, where Ta is a

tension at maximum sag (average tension) of the cable (beam) (Srinil et al., 2009). Note that Ta is herein considered as a

reference value but this may alternatively be, e.g., the maximum (minimum) tension at the top (bottom). As shown in

Table 1, cable/beam1 are more slender and dominated by tension than beam2 since the former have greater L/D and D,
respectively. In addition, cable/beam1 have larger mass (mn) and damping (x) ratios. Depending on SG, the fixed F and

G values of cable/beam1 and beam2 are different. These overall distinctions will be kept in mind when making a

discussion and comparison of prediction results.

In the following, the modal characteristics of the cable/beams are first analyzed. By focusing on the VIV prediction

for the curved nonlinear cable, the analyses of time histories, modal amplitudes and space–time displacement profiles

are discussed in Sections 4.2, 4.3 and 4.4, respectively, based on the Fixed-FG model. To highlight the Re effect, results

from Fixed- and Varied-FG models are compared in Section 4.5. The influence of geometric nonlinearities is

emphasized in Section 4.6. The numerical predictions are validated by experimental results in Section 4.7. Finally, some

aspects on the VIV modelling and predictions are drawn in Section 4.8.
4.1. Modal characteristics of flexible curved/straight structures

The dependence of VIV on modal characteristics distinguishes flexible cylinders from rigid cylinders, and the

dependence of VIV on initial curvatures distinguishes curved cylinders from straight cylinders. Based on 20 sine series

considered in the linear dynamic analysis, the natural frequencies and associated normalized modal shape functions are

shown in Table 2 and Fig. 2, respectively, for the lowest 8 modes of the cable and beams. In Fig. 2, xn indicates how the

coordinate x, which has initially been non-dimensionalized by D, is further normalized such that the maximum value –

being XH/D (L/D) in the cable (beam) case – becomes unity. Consistently, this normalization is also applied to shape

functions depicted in Fig. 2, with dashed and solid lines denoting horizontal (fn) and vertical (jn) displacement

components of the cable, respectively. For straight beam1 and beam2, the normalized mode shapes are identical, and

only transverse components (jn) are displayed by dotted lines since axial (fn) components appear at higher-order

modes.

Fig. 2 reveals that the curved cable exhibits asymmetric mode shapes due to the effect of varying initial curvatures,

whereas the straight beams exhibit typical string modes, both symmetric and anti-symmetric. These qualitative

differences affect the multi-mode interaction coefficients through Eqs. (17)–(20). In fact, owing to the zero initial

curvatures and/or the orthogonality properties of symmetric/anti-symmetric transverse modes (Srinil and Rega, 2007),

the linear Pni (Eq. (17)) and quadratic Lnij (Eq. (18)) coefficients, and some of the cubic Gnijk and Rnijk coefficients
Table 2

Natural frequencies in still water and their nearly integer frequency ratios of considered curved/straight structures.

Frequency (rad/s) Cable Beam1 Beam2

o1 0.719 0.365 8.662

o2 1.033 0.730 17.840

o3 1.461 1.095 28.004

o4 1.755 1.461 39.544

o5 2.168 1.827 52.762

o6 2.229 2.194 67.883

o7 2.622 2.562 85.066

o8 2.948 2.931 104.424

Frequency ratio Cable Beam1 Beam2

1:1 o6:o5 – –

2:1 o3:o1 o2:o1 o2:o1

o5:o2 o4:o2 o7:o4

o6:o2 o6:o3 o8:o5

o8:o3 o8:o4

3:1 o5:o1
o3:o1 o5:o2

o6:o2 o7:o3
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displacements of curved cable; dotted lines denote transverse displacements of straight beam1 or beam2.
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(Eqs. (19) and (20) with k=1 and without y0 terms) of beams are trivial. However, if axial modes come into play, Lnij

becomes significant (Srinil and Rega, 2008a). Furthermore, one cannot rule out axial modes by considering, e.g., a

linearized tensioned-beam equation. On the contrary, overall coefficients of the inclined cable are non-trivial due to the

interactions of different asymmetric modes.

Because beam2 is more dominated by bending than cable/beam1, the natural frequencies of beam2 are much higher and

more widely spaced. As shown in Table 2, the differences in frequencies between the cable and beam1 are relatively small

due to a small inclination of cable whereas those between beam1 and beam2 are considerable, being by an order or even

two orders of magnitude. Overall, some of the frequencies are commensurable as nearly integer ratios. For instance, the

o6:o5 (o5:o2 and o6:o2) ratio is about 1:1 (2:1) for the cable, whereas the o6:o2 (o7:o3) ratio is about 3:1 for beam1

(beam2). These sample frequency (1:1, 2:1, 3:1) ratios (see Table 2), together with the associated geometric nonlinearities,

would lead to a so-called internal or auto-parametric resonance condition (Nayfeh, 2000), which, in turn, adds to the

complexity of VIV prediction of flexible structures. Indeed, depending on vortex-shedding frequency (os), both external

(os versus on) and internal (amongst on) resonances may be simultaneously activated. This represents a precarious
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dynamic scenario responsible for large-amplitude VIV responses as will be further investigated in Section 4.5. In the

following, the nonlinear time histories of cylinder and fluid wake are first discussed.

4.2. Time histories of resonantly coupled cylinder/wake with mode switching

Numerical integrations of nonlinearly coupled Eqs. (13)–(16) are performed to determine the steady-state responses

of the cylinder (fn, pn) and wake (dn, en) modal coordinates, prior to evaluating relevant response amplitudes. The time

simulations depend on the input parameters, the number of modes and assigned initial displacement/velocity

conditions. By way of example, the inclined cable subject to V=0.734 m/s (osE2.4 rad/s) is considered and the time

series of cylinder (fn) and wake (dn) displacements with N=5 (n=2–6) are displayed in Fig. 3 based on very small initial

condition values from the cable static equilibrium.

As shown in Fig. 3, a beating phenomenon with continuous amplitude modulations occurs in the modal time histories

of both cylinder and fluid wake. The beginning dynamics (to800 s) are governed by the 6th-mode response having

steady amplitudes. As time progresses (t4800 s), other modal responses grow considerably and the dominant mode

switches from the 6th mode to the 4th and 5th modes (t41600 s). At this time, all modes are resonantly coupled,

becoming energetic and periodically interacting amongst themselves. The 4th mode response appears to be the most

stable and steady. Note also that modal responses of the cylinder prevail over those of wake during the multi-mode

interactions: this may be attributed to the fact that the structure usually controls the fluid when the lock-in or

synchronization takes place (Sumer and Fredsøe, 2006). The ‘‘mode switching’’ feature along the time coordinate for a

specified flow velocity, as in Fig. 3, has recently been observed in the experiments of a vertical beam partially subject to

uniform flow by Chaplin et al. (2005b). Therein, the dominant 8th mode switches to the 6th and 7th modes in cross-flow

VIV. Violette et al. (2010) have theoretically explained this behaviour based on the linear stability approach. Because

different modes can be excited at different (to800 versus t41600 s) and coincident (t41600 s) time instants, the

associated concepts of ‘‘time sharing’’ (Jaiswal and Vandiver, 2007) and ‘‘space sharing’’ (Tognarelli et al., 2004) are,

respectively, relevant to the time series in Fig. 3.

By performing a fast Fourier transform to the steady-state responses (t42400 s), the modal oscillating frequencies

oosc of cylinder/wake are also reported in Fig. 3. These should be compared with on in Table 2 and os=2.4 rad/s based

on the Strouhal law. It is evident that the coupled cylinder–wake responses of each vibration mode have the same oosc.
f 2

-50

-25

0

25

50

f 3

-50

-25

0

25

50

f 4

-50

-25

0

25

50

f 5

-50

-25

0

25

50

t (s)

0 800 1600 2400 3200 4000 0 800 1600 2400 3200 4000

f 6

-50

-25

0

25

50

d 2

-50

-25

0

25

50

d 3

-50

-25

0

25

50

d 4

-50

-25

0

25

50

d 5

-50

-25

0

25

50

t (s)

d 6

-50

-25

0

25

50

ωosc =.753 rad/s

ωosc =1.118 rad/s

ωosc =1.478 rad/s

ωosc =1.841 rad/s

ωosc =2.185 rad/s

ωosc =.753 rad/s

ωosc =1.118 rad/s

ωosc =1.478 rad/s

ωosc =1.841 rad/s

ωosc =2.185 rad/s

Fig. 3. Nonlinear time histories and associated oscillating frequencies of cylinder (fn) and wake (dn) multi-mode coordinates of curved

nonlinear cable with N=5 (n=2–6), V=0.734 m/s and small initial displacement/velocity conditions.
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This highlights how multi-mode lock-in occurs, with wake modal frequencies locking onto cylinder modal frequencies,

and qualitatively confirms what has been experimentally observed by Hover et al. (1997a) for inclined cables subject to

flows perpendicular to the equilibrium plane. Overall, the computed oosc values (0.753, 1.118, 1.478, 1.841, 2.185 rad/s)

in Fig. 3 are less than the associated on (1.033, 1.461, 1.755, 2.168, 2.228 rad/s) due to the effect of varying added mass

during VIV (Sumer and Fredsøe, 2006). The frequency ratios oosc/on of all five modes are less than 1, decreasing

consecutively from 0.98, 0.85, 0.84, 0.77 to 0.73 as the mode number increases. This further highlights how, in addition

to the mass/damping parameter (Williamson and Govardhan, 2004), the hydrodynamic added mass is also mode-

dependent for a flexible cylinder.

Based on other numerical simulations, it has been found that the mode switching, space/time sharing characteristics

for a given flexible cylinder and V depend on both the number of interacting modes and the assigned initial conditions.

The latter, in turn, affect the onset of limit cycles or steady-state responses and, of course, the computational time.

To conduct a series of parametric studies with varying V, it is necessary to assign the initial conditions based on the

maximum or steady-state modal responses obtained from the previous V case. In the following section, the response

amplitude diagrams of flexible cylinder are discussed.
4.3. Response amplitude diagrams of flexible cylinder

It is now of interest to estimate the maximum modal and total (superimposed) amplitudes of the flexible curved

cylinder, and also varying flow velocity (V) and considering different low-order (N) models. As remarked by Williamson

and Govardhan (2004), one of the fundamental questions deals with the maximum attainable amplitudes of cylinders

subject to VIV. In this study, the maximum amplitudes based on each individual mode (An/D) and all superimposed

modes (AR/D) are both evaluated. Note that the An/D are useful in the analysis of multi-mode contributions and

interactions, as well as the determination of dominant mode(s) in VIV. On the other hand, AR/D is useful in evaluating

the total response which is in turn meaningful for the ensuing stress and fatigue analyses.

The An/D of the flexible cylinder are approximated by

An=D¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½fn;maxfn;max�

2 þ ½fn;maxjn;max�
2;

q
ð29Þ

where for the nth vibration mode, fn,max is the maximum value of fn obtained from the steady-state time histories (e.g.

Fig.3 for t42400 s), and fn,max (jn,max) is the spatially maximum horizontal or axial (vertical or transverse)

displacement of the mode shape functions of the cable or beam, respectively. Depending on the number of modes

considered N=(N2�N1)þ1, the space–time (i, j) varying displacement profiles accounting for all modal contributions

are expressed as

uðxi; tjÞ ¼
XN2

n ¼ N1

fnðtjÞfnðxiÞ; vðxi; tjÞ ¼
XN2

n ¼ N1

fnðtjÞjnðxiÞ: ð30Þ

Accordingly, AR/D are determined based on the spatially and temporally maximum values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

. In some

cases, the root-mean-squared (rms) amplitude at a specific cylinder position Arms(xi)/D and the overall spatially

maximum value Arms,max/D are computed through Eq. (30), by accounting for a standard deviation in fn (tj).

By way of example, the inclined cable is again considered with 0.1oVo1 m/s. Fig. 4(a) and (b) depict the An/D

diagrams obtained by the single-mode (N=1, where n=1, 2,y, 7) and multi-mode (N=7, n=1–7) models,

respectively. Note that results from 7 single-mode analyses are jointly plotted in Fig. 4(a), in contrast to results from one

multi-mode analysis plotted in Fig. 4(b). As shown in Fig. 4, both quantitative and qualitative differences take place in

between single-mode (Fig. 4(a)) and multi-mode (Fig. 4(b)) models, even though all seven modes are consecutively

excited as V increases. In particular, the single-mode model overestimates An/D with a maximum value reaching 2.32

corresponding to either the 4th or 5th mode (Fig. 4(a)). This is different from the multi-mode model where the

maximum An/D is about 1.44 corresponding to the 6th mode (Fig. 4(b)). Moreover, the single-mode model widens all

modal lock-in ranges, resulting in a large overlapping area of modal amplitudes. A hysteresis effect, where the modal

response reaches its peak and suddenly jumps down prior to switching to a new modal response as V increases, is

captured by the multi-mode model (see, e.g., A1/D, A2/D and A6/D). In accordance with Fig. 3, three dominant modes

(A4/D, A5/D and A6/D) appear at VE0.73 m/s and the multi-mode lock-in involving two or three modes occurs over a

particular V range in Fig. 4(b). The 5th and 6th modal responses are strongly coupled since their natural frequencies

(2.168 and 2.228 rad/s) are nearly 1:1 resonant (Table 2). The coupling in VIV of two cable modes having nearly

identical frequencies has been experimentally discussed by Hover et al. (1997a).
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Corresponding to Fig. 4(b), Fig. 5 displays An/D versus the reduced flow velocity parameter Ur=2pV/onD based on

each modal frequency on. These plots are useful in comparing the extent of lock-in associated with different excited

modes. Overall, the maximum An/D are in the range of 1oAn/Do2 and synchronization occurs in the range of 5oUro8.

These predictions of curved cable are in good quantitative and qualitative agreement with well-known cross-flow VIV

characteristics of flexible cylinders (Fujarra et al., 2001).

To determine how many modes are actually required in obtaining a low-order multi-mode solution, it is necessary to

perform a convergence study by varying N in the determination of AR/D, which accounts for overall modal

superimposition. The solution converges when AR/D remains unchanged with increasing N. By considering the cable

with N=2 (n=1–2), 3 (n=1–3), 5 (n=1–5), 7 (n=1–7) and 9 (n=1–9), the AR/D are jointly plotted in Fig. 6 for

0.1oVo1 m/s. It can be seen that the two- and three-mode models are only valid in the low V range (Vr0.3 m/s).

More modes are required when further increasing V. With five-mode and seven-mode models, the solution convergence

is satisfied in the higher ranges of Vr0.5 and 0.95, respectively, in comparison with the nine-mode model.

Overall, the mode switching with varying V, the multi-mode sharing and interactions whereby modal amplitudes

overlap in different V ranges are systematically captured by the multi-mode model (Fig. 4(b)). A sufficient number of

considered modes are required in the low-order model of flexible cylinder (Fig. 6). The single-mode model may lead to

both quantitative as well as qualitative errors in VIV predictions (Fig. 4(a)). Therefore, it is suggested considering the
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multi-mode model by simultaneously simulating all modal nonlinear differential equations. In the following, resonant

nonlinear modes of flexible cylinder are discussed.
4.4. Resonant nonlinear modes of flexible cylinder

As highlighted in Sections 4.2 and 4.3, the multi-mode lock-in, sharing, switching and interaction features in VIV of

flexible cylinder occur in a specific period of time and V range. Depending on modal characteristics (Fig. 2) and

participating VIV amplitudes (Fig. 4(b)), the space–time varying profiles of u and v displacements are now constructed
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based on Eq. (30) and normalized such that the spatially maximum amplitudes are equal to 1 (unm, vnm). In the event of

lock-in where vortex-shedding and cylinder oscillating frequencies are resonant, such displacement profiles are herein

defined as ‘‘resonant nonlinear modes’’ of flexible cylinder. They are useful in the ensuing analyses of curvatures, stress

and fatigue, and may be further useful in a framework of nonlinear modal reduction technique (Srinil and Rega, 2007).

Based on the An/D of inclined cable in Fig. 4(b) with N=7, the unm (dashed lines) and vnm (solid lines) profiles at

different four time snapshots (t1–t4) are plotted in Fig. 7 for given V=0.339, 0.595 and 0.739 m/s, respectively. With

V=0.339 m/s, there are two interacting 1st and 2nd modes in VIV with A1/D=0.276 and A2/D=0.774 (Fig. 4(b)). As a

result, both unm and vnm profiles exhibit either a predominant 1st-mode (t1), 2nd-mode (t2, t3) or likely a combination of

both (t4), with respect to linear mode shapes in Fig. 2(a) and (b). The two-mode interaction feature is also shown when

V=0.595 m/s. In this case, the predominant modes are the 3rd and 4th modes with A3/D=1.285 and A4/D=0.298
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(Fig. 4(b)). Because of the much greater contribution from the 3rd mode than the 4th mode, resonant nonlinear modes are

predominated by either the former (t1, t2) or the combination of both (t3, t4), whereas a pure 4th-mode response is not

found. When further increasing V, the modal interaction effect becomes greater due to the increasing modal density at

higher-order modes. This is highlighted by the three-mode interaction when V=0.739 m/s. In this case, the nearly

comparable participating amplitudes are A4/D=0.894, A5/D=0.735 and A6/D=0.626 (Fig. 4(b)). As a result, the

asymmetry in nonlinear mode shapes is remarkable: the locations of minimum (node) and maximum (anti-node)

amplitudes spatially and temporally vary. The largest curvatures appear near the seabed (xn=1) which is the region of

primary concern in the design of curved cylinder such as catenary riser.

Hitherto, the attention has been placed on the analysis of the inclined cable due to the fact that a very few papers have

investigated VIV of flexible curved cylinders. Yet, the methodologies applied to an inclined cable are the same as those

applied to a straight beam. These should involve a complete study of time histories (Section 4.2), modal amplitudes

(Section 4.3) and resonant nonlinear modes (Section 4.4), by also varying V and N. Owing to multi-mode interactions,

nonlinear and linear modes are in fact different, since the former can vary with space and time. Depending on modal

contributions, the space–time evaluation of cylinder maximum amplitudes is very useful as relevant experiments need a

realistic positioning of strain sensors measuring the peak fatigue. In the following, the effects of fluid/structure

parameters on VIV predictions are investigated, by considering all cable/beams with reasonable low-order models.

4.5. Influence of Reynolds number

It is now of importance to examine the influence of Re on multi-mode VIV predictions of flexible cylinders. In so doing,

all curved cable and straight beams with geometric nonlinearities are analyzed, and the modal amplitudes (An/D)

with Fixed- and Varied-FG models are compared. By accounting for the Re effect (Eq. (28)) in the derivation of

wake coefficients, some varying F and G values with Re are given in Table 3 for cable/beam1 and beam2. Note that the

sub-critical flow range is considered with the assumed maximumReE3� 105 (Sumer and Fredsøe, 2006). As Re increases,

Table 3 shows that F slightly increases whereas G decreases more noticeably. This entails how the coupled wake/cylinder

system is mostly controlled by damping terms in Eq. (16) which, in fact, regulate the self-limiting character in VIV. Thus,

as G decreases (Re increases), it is expected to come across greater response amplitudes due to the diminishing damping

effect, and this is consistent with the experimental results of Govardhan and Williamson (2006). By comparing between

Tables 1 and 3, the fixed F and G (Skop and Balasubramanian, 1997) in Table 1 correspond to the estimated F and G in

Table 3 in the Reo2.5� 104 range.

It is worth mentioning that the formula in Eq. (28) is based on experimental forced vibrations of rigid cylinder in the

range of 500oReo3.3� 104, and it is presently unknown whether this formula continues to be valid at higher Re

(Govardhan and Williamson, 2006). Nonetheless, based on recent experimental results of flexible cylinder, Swithenbank

et al. (2008) showed a significant trend of increasing amplitudes with Re up to 2� 105. For this reason, it is herein

assumed that Eq. (28) holds towards the upper limit of sub-critical flow range, with the aim of determining whether and

how incorporating the Re dependence into the theoretical model could qualitatively and quantitatively affect the

associated VIV predictions.

By considering now the inclined cable (beam1) with N=9, 0.1oVo1 m/s and 3� 104oReo3� 105, Fig. 8(a) ((c))

and (b) ((d)) display the An/D diagrams with Fixed- and Varied FG models, respectively. It can be seen that both

quantitative and qualitative differences occur between the two models neglecting or accounting for the Re effect

(i.e., Fig. 8(a) versus (b) and Fig. 8(c) versus (d)). For both curved/straight cylinders, the amplitudes – as well as the
Table 3

Variation of wake coefficients with Re for considered curved/straight structures.

Re Cable/Beam1 Beam2

F G F G

5000 0.641 0.597 0.307 3.191

10000 0.644 0.470 0.315 2.267

25000 0.647 0.357 0.322 1.594

50000 0.648 0.297 0.326 1.278

75000 0.649 0.268 0.327 1.137

100000 0.650 0.251 0.328 1.052

250000 0.651 0.205 0.331 0.838

300000 0.651 0.197 0.331 0.804
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resulting modal interactions – predicted by the Varied-FG model become greater than those predicted by the Fixed FG

model. This is expected from the decreasing G in Table 3. The maximum An/D of cable (beam1) is about 1.41 (1.33)

by the Fixed-FG model, whereas it reaches about 2.3 (1.88) by the Varied-FG model. Interestingly, for cable with

Varied-FG model, the 2nd-mode is excited in two different – primary (0.3oVo0.5 m/s) and secondary (0.7oVo1.0 m/s)

– lock-in regimes, as highlighted by the shaded areas in Fig. 8(b). In the secondary lock-in region, there are as many as

six interacting modes in VIV responses. For instance, with V=0.845 m/s (ReE2.5� 105), the underlying modes are

A2/D=1.86, A3/D=0.33, A4/D=0.97, A5/D=1.63, A6/D=1.86 and A7/D=0.38. These observed responses are in

contrast to the Fixed-FG model (Fig. 8(a)) where only primary lock-in region of 2nd mode occurs (see the shaded area)

and, with V=0.845 m/s, there are fewer three excited modes with A4/D=0.16, A5/D=1.19 and A6/D=1.21.

The participation of 2nd mode in the curved cylinder response giving rise to its secondary lock-in regime at higher V

may be attributed to the effect of 2:1 internal resonances since both o5 (2.168 rad/s) and o6 (2.228 rad/s) frequencies are

nearly twice that of o2 (1.033 rad/s) (see Table 2). Both higher modes are in fact strongly coupled and can excite the

lower one through geometric nonlinearities of initial curved structure (Srinil and Rega, 2007). Thus, the Varied-FG

model in Fig. 8(b) highlights the occurrence of simultaneous external/internal resonances due to the interactions of

cylinder versus vortex-shedding and cylinder versus cylinder frequencies, respectively. These numerical outcomes entail

large-amplitude VIV predictions at high Re range, though relevant experimental confirmation is still unavailable.

When considering beam1, the modal interaction effect again becomes more manifest as Re (G) increases (decreases), as

shown by the Varied-FG model in Fig. 8(d) in comparison with the Fixed-FG model in Fig. 8(c). Nevertheless, the secondary

lock-in of any mode is not observed. This is because, even though system natural frequencies are commensurable as integer

ratios (Table 2), the nonlinear orthogonality properties of symmetric (e.g. 3rd) versus anti-symmetric (e.g. 6th) modes prevent

the internal resonance from being activated (Srinil and Rega, 2007). Thus, the differences between Fig. 8(a) ((b)) and (c) ((d))

are due to the effect of varying initial curvatures of cable since other input parameters are identical (Table 1).
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Beam2 which has a greater bending stiffness (D) than beam1 is now considered with 0.1oVo2.0 m/s and

2� 103oReo3� 104. The An/D results with N=9 are plotted in Fig. 9. In contrast to beam1, the Re effect on VIV

prediction is seen to be relatively small for beam2. Both Fixed-FG (Fig. 9(a)) and Varied-FG (Fig. 9(b)) models reveal

similar An/D diagrams with a high degree of multi-mode contributions throughout the V range. With V40.5 m/s, there

is no clear synchronization or lock-in condition found in either Fig.9(a) or (b), and the time histories are indeed non-

periodic and highly modulated as illustrated by the first four modal (f1–f4) responses in Fig. 10 with V=1.11 m/s

(Fig. 9(b)). Recall also that beam2 has high and widely spaced values of natural frequencies (Table 2). By considering a

larger mass-damping parameter (an) with increasing either the mass (mn) or damping (x) ratio, numerical results with

Varied-FG model (not shown herein) still reveal non-periodic features although with smaller amplitudes. The

occurrence of highly modulated responses of a straight beam in uniform flow has been observed, e.g., by Chaplin et al.

(2005b). Recently, Chasparis et al. (2009) defined the non-periodic as chaotic response and suggested several excited

modes in chaotic VIV. Based on available experiment results (Tognarelli et al., 2004), the validation of numerical results

of beam2 will be discussed in Section 4.7, by also recognizing the high fluctuating responses as in Fig. 10 and thus

considering the rms amplitudes.
4.6. Influence of structural geometric nonlinearities

The influence of geometric nonlinearities on VIV predictions of flexible cylinders is now highlighted. By considering

linear curved/straight cylinder models which disregard the modal interaction terms in Eq. (14), all inclined cable, beam1

and beam2 are again analyzed. With Varied-FG model and N=9, the predicted maximum An/D are displayed in

Fig. 11(a) (cable), (b) (beam1) and (c) (beam2), in comparison with nonlinear model results in Figs. 8(b), (d) and 9(b),

respectively. Overall, there are quantitative and qualitative differences between nonlinear and linear models. In

particular, the secondary lock-in regime of cable 2nd mode is not detected by the linear model in Fig. 11(a). This

justifies how the observed 2:1 internal resonances in Fig. 8(b) are associated with geometric nonlinearities. With regard

to beams, overall modal amplitudes (An/DE1.5–2.5) in Fig. 11(b) (beam1) and (c) (beam2) are considerably greater than

those in the associated Figs. 8(d) and 9(b) due to the neglected multi-mode interactions in the former. As a result, a

single-mode lock-in is clearly seen throughout the V range in both Figs. 11(b) and (c). Because only the wake

nonlinearities (Eq. (20)) are taken into account in the results of Fig. 11, the observed hysteresis effect in modal responses

is solely associated with the fluid mechanism. This is in good qualitative agreement with experimental results by Brika

and Laneville (1993).

By superimposing all modal amplitudes and accounting for their standard variations, the plots of Arms/D versus

varying V and xn are now illustrated in Fig. 12, by comparing between nonlinear and linear models of cable (Fig. 12(a)

versus (b)) and beam2 (Fig. 12(c) versus (d)). Both Figs. 12(a) and (b) appear qualitatively similar in terms of overall

amplitude variations although there are some differences in spatial profiles at high V (40.7 m/s) due to different modal

contributions shown in between Figs. 8(b) and 11(a). On the contrary, both quantitative/qualitative differences in

spatial profiles are remarkable for beam2 when comparing between nonlinear (Fig. 12(c)) and linear (Fig. 12(d))
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cylinder models. The nonlinear (linear) model entails smaller (greater) Arms,max/D=0.593 (0.694). According to a

single-mode lock-in feature in Figs. 11(c), Fig. 12(d) shows a regular pattern of spatial profiles with increasing number

of half-sine waves as V and mode number increase. This is in contrast to Fig. 12(c) where a dominant mode cannot be

characterized in a wide V range due to high multi-mode contributions and fluctuation of response amplitudes as shown

in Figs. 9(b) and 10, respectively.

4.7. Numerical and experimental comparisons

The presented low-order wake/cylinder interaction model is now validated by performing numerical and experimental

comparisons of VIV predictions. Owing to the varying modal interaction effect, the comparisons within a whole V range,

rather than a specific V, should be made. In this study, the experimental results of beam2 post-processed by Tognarelli

et al. (2004) are referenced, by only considering cross-flow VIV. Of importance from a design viewpoint, the numerical–

experimental comparisons are made in terms of spatially maximum values of rms amplitudes (Arms,max/D) and ‘‘fatigue

damage index’’ (FDImax). Following Tognarelli et al. (2004), FDI may be approximated as FDI � fde3, where fd is herein

the natural frequency (Hz) of a mode predominating in VIV response and e is the micro-bending strain calculated based

on a rms value of cylinder dynamic curvature. Note that the estimation of fatigue damage is usually based on a ratio of

the number of stress cycles incurred over the number of stress cycles to failure. This could be evaluated through the S–N

curve which may entail the proportionality relationship: fatigue damagepfds
3 (Baarholm et al., 2006). Because the stress

(s) is proportional to the bending strain that can be directly measured from experiments via strain gauges, Tognarelli

et al. (2004) have introduced FDI to simply approximate the fatigue damage with a slope of 3 from S–N curve. This is

convenient in the parametric studies and further comparisons with industrial tool predictions (Yang et al., 2008). In fact,

the FDI is independent of a stress concentration factor or S–N curve intercept, but providing these values would give rise

to actual fatigue damage being proportional to FDI by a constant factor.

In Fig. 13, both linear (L) and nonlinear (NL) structural models are analyzed, by also accounting for the Re effect

(Varied-FG model). By varying V, Fig. 13(a) compares the variation of Arms,max/D with different low-order (N=8, 9, 10)
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models and with NL versus L (N=9) models. Correspondingly, Fig. 13(b) compares the variation of FDImax. It can be

seen in Fig. 13(a) that, in a low V range, all numerical models yield good agreement with experiment results. For

V40.8 m/s, the differences increase: the predicted amplitudes by NL models are lower than the experimental amplitudes

whereas those by L model (N=9) are more comparable to the latter. On the contrary, as V increases in Fig. 13(b), the L

model provides considerably overestimated FDImax results whereas all NL models entail better quantitative predictions.

Such greater discrepancies given by the L model increase with V and persist in spite of varying N, as shown in Fig. 13(c).

Therefore, Fig. 13(a)–(c) highlight the effect of geometric nonlinearities on numerical predictions as well as their

comparisons with experimental post-processed results.

Overall, Fig. 13(b) and (c) show how both numerically and experimentally predicted fatigue damage progressively

increases with increasing V. A better quantitative comparison of FDImax between numerical NL model and experimental

results is plausible since bending strains have been directly measured and used in the FDI approximations. This is in contrast

to the experimental amplitudes whose values have been post-processed based either on double integrations of strains/

accelerations or a linear modal analysis in frequency domain. For this reason, a poorer (better) comparison of fatigue

damage indices (response amplitudes) is found by the L model. Because such post-processing procedure for the estimated

displacements overlooks the effect of geometric nonlinearities as well as multi-mode interactions, it may be more worthwhile

relying on a comparison of bending strains or damage indices rather than amplitudes. Yet, quantitative errors are still seen

by numerical results of NL model in Fig. 13(b) and these may be due to the wake oscillator’s inability to capture actual flow

mechanisms in the wake and to the fact that the considered low-order model excludes the effect of in-line VIV.

To show the possible effect of other input parameters, Fig. 13(d) compares Arms,max/D results with different given St,

by considering the NL model with N=8. Recall also that, in contrast to coefficients F and G, the St value is fixed when

varying V (Re). The St effect on VIV prediction and comparison with experiment result is studied due to the fact that
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the reported St values in the literature are different though post-processing the same ExxonMobil experimental data.

For instance, St=0.21 in Tognarelli et al. (2004) whereas St=0.14 in Yang et al. (2008). In Fig. 13(a)–(c), results are

based on the averaged St=0.17 (Table 1). Because St has been incorporated into theoretical model (implicitly through m)
and governing formulae (Eqs. (21)–(28)) deriving the varying wake coefficients, the predicted numerical results are

influenced by St. Indeed, these are shown in Fig. 13(d) where, in a high V range, Arms,max/D increase with decreasing St

and results with St=0.14 become less quantitatively different from experimental results. This emphasizes that the

accurately referenced value of St, apart from other influencing parameters (such as x and its mode dependence), is also

important in the comparison of numerical and experimental predictions.
4.8. Discussion

To further improve numerical results and their comparisons with experimental data, some aspects on the VIV

modelling and predictions of flexible curved/straight structures are summarized as follows:
(i)
 The effect of in-line motions which has been herein neglected should also be accounted for in the upcoming model

development, since coupled cross-flow/in-line VIV are most realistic (Jauvtis and Williamson, 2004; Sarpkaya,

2004). Indeed, there are a very few wake oscillators for in-line VIV in the literature (Currie and Turnbull, 1987).

For this reason, a new wake oscillator model for in-line VIV is needed along with its set of empirical coefficients.
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A complete study of cross-flow/in-line multi-mode VIV would allow us to identify the real extent of the underlying

effects of geometric nonlinearities and multi-mode interactions.
(ii)
 As regards curved cylinder, the uniform flow perpendicular to its initial equilibrium plane has been herein

considered. This is plausible because, in such a case, cross-flow wake dynamics of curved cylinder behaves

qualitatively similar to those of straight cylinder (Miliou et al., 2003). To capture the effect of varying curvatures,

the wake oscillator has been modified to account for the local angle between wake and cylinder axis. This might not

be applicable to the case of flow being aligned with (or non-perpendicular to) the curvature plane where wake

dynamics change dramatically, depending on the cylinder configuration being, e.g., convex or concave with respect

to the incoming flow (Miliou et al., 2007). For flexible curved and inclined structures subject to non-perpendicular

flows, the associated VIV dynamics have been found to be quite irregular and exhibit a hybrid standing-travelling

wave behaviours with significant phase differences in motion along the structural axis (Moe and Teigen, 2004).
(iii)
 Depending on the number of interacting modes and system parameters, approximate closed-form solutions for the

autonomous system Eqs. (13)–(16) may be derived based on, e.g., the method of multiple scales (Srinil et al., 2007). This

would enlighten a variety of coexisting stable/unstable (periodic/chaotic) responses through bifurcations within the lock-

in regimes. In addition, it would also be possible to determine a generic criterion on the minimummode number required

in the VIV analysis of flexible cylinders without performing time-consuming numerical simulations. The coexisting

responses are practically useful in identifying a parametric range of unwanted dynamic scenarios leading to large-

amplitude VIV, whereas the minimum mode number is theoretically important from a low-order modelling viewpoint.
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(iv)
 On the other hand, it is worthwhile directly integrating the coupled Eqs. (4), (5) and (9) and (10) without modal

expansion (Srinil and Rega, 2008b) to capture the actual infinite-dimensional nature of the distributed-parameter

system and allow for the space–time modification of both fluid/structural properties. In so doing, a discrete x

position where sin y=0 (Eqs. (9)) or cos y=0 (Eq. (10)) should be first examined. This is because, to avoid a

breakdown during numerical simulations owing to the zeroing denominator, such x position will not be taken into

account in the associated spatial discretization by, e.g., a finite difference approach.
(v)
 The empirical wake coefficients, even in the case of pure cross-flow VIV, could be further improved and calibrated

with additional new experimental results. In particular, the formula (Eq. (28)) given by Govardhan and Williamson

(2006) to capture the Re dependence should be validated whether it remains valid at high Re (43.3� 104) or a new

formula should be proposed. In addition, it would be also worthwhile determining the Re dependence of the

frequency ratio term given by Eq. (27). Numerical results in Section 4.6 have highlighted both quantitative and

qualitative effects of Re on multi-mode VIV predictions of curved cylinder, and the relevant experimental

investigations verifying these observations are also needed.
5. Summary and concluding remarks

Multi-mode interactions in VIV of flexible curved/straight cylindrical structures with geometric nonlinearities have

been numerically investigated through a systematic low-order coupled wake-cylinder model. Cross-flow motions due to

unsteady lift forces of inclined sagged cable and straight tensioned beams in uniform currents have been analyzed. The

nonlinear equations of structural motions are based on a general pinned–pinned flexural curved cable model. The

empirical hydrodynamic forces are based on the distributed van der Pol wake oscillators which capture both the effects

of varying initial curvatures of inclined cylinder and Re. Numerical simulations have been performed in the case of

varying flow velocities V. Depending on system fluid–structure parameters, empirical coefficients, vortex-shedding/

natural frequencies, modal characteristics, multi-mode contributions and assigned initial conditions, parametric results

highlight several meaningful aspects of VIV of long flexible cylinders which have been experimentally observed in the

literature. The main features are summarized as follows:
(a)
 Multi-mode lock-in, switching, sharing and interaction features take place both in response time histories (for a

given V) and amplitude diagrams (with increasing V). In time histories, the beating phenomena with continuous

amplitude modulations are observed in both cylinder/wake modal responses. In amplitude diagrams, multiple

modal responses overlap in specific V ranges. The lock-in bandwidth and hydrodynamic added mass are found to be

mode-dependent. The transition and superimposition of modes are displayed through the space–time varying

displacement profiles which are herein defined as resonant nonlinear modes associated with lock-in conditions.
(b)
 Maximum modal and total amplitudes of flexible cylinders have been estimated. The lowest single-mode model may

lead to quantitative as well as qualitative discrepancies when compared to multi-mode models. To obtain solution

convergence of amplitudes, a proper number of potentially excited modes should be considered in low-order

models.
(c)
 For inclined curved nonlinear cable, a new qualitative feature in VIV of flexible cylinder is found when accounting

for the Re effect in the theoretical model and analysis. As V increases, simultaneous external/internal resonances –

giving rise to both primary and secondary lock-in regimes – take place, with the secondary lock-in involving large-

amplitude responses due to strong multi-mode interactions. For a tensioned beam with significant multi-mode

contributions, the dynamic responses are highly non-periodic and modulated, and the Re is seen to play a minor

role in response predictions.
(d)
 Overall, the geometric nonlinearities of flexible cylinders play a significant role both in VIV numerical predictions

and comparisons with experimental results. The linear structural model provides overestimated modal amplitudes

and ignores the meaningful effect of multi-mode interactions.
Apart from making use of a general low-order wake/cylinder interaction model and systematic approach in the

analysis of flexible curved/straight structures undergoing multi-mode VIV, numerical results complement several

experimental observations and furnish the improved understanding of multi-mode interaction features. The empirical

wake oscillator could be further calibrated and modified in many ways along with new experimental and/or CFD-based

hydrodynamics. It is felt that the presented low-order multi-mode model and numerical time-domain approach will be

very helpful in the development of industrial prediction tools for the analysis and design of actual slender offshore

structures involving hydrodynamic/geometric nonlinearities due to the space–time fluid/structure interactions.
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